Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
1.
Pathol Int ; 74(4): 197-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353379

RESUMO

Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Yin-Yang , Cirrose Hepática/metabolismo , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Tetracloreto de Carbono
2.
Clin Imaging ; 107: 110087, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241966

RESUMO

The yin-yang sign, also known as the Pepsi sign, is used to describe the classic appearance of bidirectional blood flow within an aneurysm or pseudoaneurysm sac on color Doppler ultrasound. The corresponding spectral Doppler finding is a "to-and-fro" waveform, caused by inflow to the aneurysm/pseudoaneurysm sac during systole and outflow during diastole. It is important to recognize this sign in order to quickly identify the presence of an aneurysm or pseudoaneurysm and prevent complications such as expansion and rupture.


Assuntos
Falso Aneurisma , Aneurisma , Masculino , Humanos , Falso Aneurisma/diagnóstico por imagem , Falso Aneurisma/etiologia , Yin-Yang , Aneurisma/complicações , Ultrassonografia Doppler
3.
Dev Comp Immunol ; 151: 105087, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37898353

RESUMO

Hemocyanin is a respiratory protein, it is also a multifunctional immune molecule that plays a vital role against pathogen invasion in shrimp. However, the regulation of hemocyanin gene expression in shrimp hemocytes and the mechanisms involved during pathogen infection remains unclear. Here, we used DNA pull-down followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the Yin Yang 1 transcription factor homolog in Penaeus vannamei (PvYY1) as a key factor that modulates transcription of the small subunit hemocyanin gene of P. vannamei (PvHMCs) in hemocytes during Vibrio parahaemolyticus AHPND (VPAHPND) infection. Bioinformatics analysis revealed that the core promoter region of PvHMCs contains two YY1 motifs. Mutational and oligoprecipitation analyses confirmed that PvYY1 could bind to the YY1 motifs in the PvHMCs core promoter region, while truncation of PvYY1 revealed that the N-terminal domain of PvYY1 is essential for the transactivation of PvHMCs core promoter. Besides, the REPO domain of PvYY1 could repress the activity of the PvHMCs core promoter. Overexpression of PvYY1 significantly activates the promoter activity of PvHMCs core promoter, while PvYY1 knockdown significantly decreases the expression level of PvHMCs in shrimp hemocytes and survival rate of shrimp upon infection with VPAHPND. Our present study provides new insights into the transcriptional regulation of PvHMCs by PvYY1 in shrimp hemocytes during bacteria (VPAHPND) infection.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Hemocianinas , Proteínas de Artrópodes/genética , Cromatografia Líquida , Yin-Yang , Espectrometria de Massas em Tandem , Imunidade Inata/genética
5.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5707-5718, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114167

RESUMO

Sleep occupies one-third of a person's lifetime and is a necessary condition for maintaining physiological function and health. With the increase in social and economic pressures, the growing use of electronic devices and the accelerated aging process of the population, insufficient sleep and its hazards have drawn widespread attention from researchers in China and abroad. Sleep deprivation refers to a decrease in sleep or a severe lack of sleep due to various reasons. Previous studies have found that sleep deprivation can cause extensive damage to the body, including an increased incidence and mortality rate of neuropathic diseases in the brain, cardiovascular diseases, imbalances in the gut microbiota, and other multi-organ diseases. The mechanisms underlying the occurrence of multi-system and multi-organ diseases due to sleep deprivation mainly involve oxidative stress, inflammatory responses, and impaired immune function in the body. According to traditional Chinese medicine(TCM), sleep deprivation falls into the category of sleepiness, and long-term sleepiness leads to Yin-Yang imbalance, resulting in the consumption of Qi and damage to the five Zang-organs. The appropriate treatment should focus on tonifying deficiency, reinforcing healthy Qi, and harmonizing Yin and Yang. TCM is characterized by a wide variety and abundant resources, and it has minimal side effects and a broad range of applications. Numerous studies have shown that TCM drugs and prescriptions not only improve sleep but also have beneficial effects on liver nourishment, intelligence enhancement, and kidney tonification, effectively preventing and treating the body injury caused by sleep deprivation. Given the increasing prevalence of sleep deprivation and its significant impact on body health, this article reviewed sleep deprivation-mediated body injury and its mechanism, summarized and categorized TCM compound prescriptions and single drugs for preventing and treating body injury, with the aim of laying the foundation for researchers to develop effective drugs for preventing and treating body injury caused by sleep deprivation and providing references for further exploration of the molecular mechanisms underlying the body injury caused by sleep deprivation.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Sonolência , Yin-Yang , China , Medicamentos de Ervas Chinesas/uso terapêutico
6.
Chin J Physiol ; 66(6): 401-436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149555

RESUMO

In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Medicina Tradicional Chinesa , Masculino , Feminino , Humanos , Yin-Yang , Fígado , Rim
7.
Cancer Immunol Res ; 11(12): 1578-1588, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902610

RESUMO

Cancer-related inflammation is a crucial component of the tumor microenvironment (TME). Complement activation occurs in cancer and supports the development of an inflammatory microenvironment. Complement has traditionally been considered a mechanism of immune resistance against cancer, and its activation is known to contribute to the cytolytic effects of antibody-based immunotherapeutic treatments. However, several studies have recently revealed that complement activation may exert protumoral functions by sustaining cancer-related inflammation and immunosuppression through different molecular mechanisms, targeting both the TME and cancer cells. These new discoveries have revealed that complement manipulation can be considered a new strategy for cancer therapies. Here we summarize our current understanding of the mechanisms by which the different elements of the complement system exert antitumor or protumor functions, both in preclinical studies and in human tumorigenesis. Complement components can serve as disease biomarkers for cancer stratification and prognosis and be exploited for tumor treatment.


Assuntos
Neoplasias , Yin-Yang , Humanos , Proteínas do Sistema Complemento , Ativação do Complemento , Inflamação , Microambiente Tumoral
8.
Pathol Res Pract ; 251: 154885, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862922

RESUMO

In accordance with the World Health Organization, cancer is the second leading cause of death in patients. In recent years, the number of cancer patients has been growing, and the occurrence of cancer in people is becoming more common, primarily due to lifestyle factors. Yin Yang 1 (YY1) is a transcription factor that is widespread throughout. It is a zinc finger protein, falling under the GLI-Kruppel class. YY1 is known to regulate transcriptional activation and repression of various genes associated with different cellular processes such as DNA repair, autophagy, cell survival and apoptosis, and cell division. Meanwhile, EZH2 is a histone-lysine N-methyltransferase enzyme encoded by gene 7 in humans. Its main function involves catalyzing the addition of methyl groups to histone H3 at lysine 27 (H3K27me3), and it is involved in regulating CD8 + T cell fate and function. It is a subunit of a Polycomb repressor complex 2 (PRC2). The EZH2 gene encodes for an enzyme that is involved in histone methylation and transcriptional repression. It adds methyl groups to lysine 27 on histone H3 (H3K27me3) with the help of the cofactor S-adenosyl-L-methionine. In addition to its role in epigenetic regulation, EZH2 also acts as a regulator of CD8+ T cell fate and function. EZH2 has been implicated in T Cell Receptor (TCR) signaling via the regulation of actin polymerization. In fact, EZH2 is involved in numerous signaling pathways that lead to tumorigenesis. EZH2 is mutated in cancer and shows overexpression. Due to its mutation and overexpression, the cells that help combat cancer are suppressed and carcinogenicity is promoted. The association of EZH2 and YY1 poses an intriguing mechanism in relation to cancer.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histonas/genética , Complexo Repressor Polycomb 2/genética , Lisina , Epigênese Genética , Yin-Yang , Neoplasias/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
9.
Zhongguo Zhen Jiu ; 43(10): 1202-6, 2023 Oct 12.
Artigo em Chinês | MEDLINE | ID: mdl-37802529

RESUMO

Renying Cunkou pulse method is one of the classical pulse methods of acupuncture-moxibustion in the Yellow Emperor's Inner Canon, which is also a classical clinical paradigm for diagnosing and treating meridian diseases in the ancient times. Based on comprehensive review of literature and clinical practice, this paper reveals that this method compares the size of the neck Renying pulse with hand Cunkou pulse to determine the change of yin-yang and excess-deficiency identifying the affected meridians. The jing-well, xing-spring, and shu-stream points of the surface and interior meridians of affected meridians are mainly selected to regulate deficiency and excess through reinforcing and reducing methods. The Renying Cunkou pulse method possesses a simple and practical medical theory, easy diagnostic procedure, and clear meridian selection for acupuncture-moxibustion treatment, warranting further exploration of its essence and diagnostic therapeutic principles.


Assuntos
Terapia por Acupuntura , Acupuntura , Meridianos , Moxibustão , Terapia por Acupuntura/métodos , Yin-Yang , Pontos de Acupuntura
11.
Clin Transl Med ; 13(10): e1422, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37771187

RESUMO

BACKGROUND: A growing number of studies have shown that Yin Yang 1 (YY1) promotes the development of multiple tumours. The purpose of the current study was to determine the mechanism by which YY1 mediates neuroendocrine differentiation of prostate cancer (NEPC) cells undergoing cellular plasticity. METHODS: Using the Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, we bioinformatically analyzed YY1 expression in prostate cancer (PCa). Aberrant YY1 expression was validated in different PCa tissues and cell lines via quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. In vivo and in vitro functional assays verified the oncogenicity of YY1 in PCa. Further functional assays showed that ectopic expression of YY1 promoted cellular plasticity in PCa cells via epithelial-mesenchymal transition induction and neuroendocrine differentiation. RESULTS: Androgen deprivation therapy induced a decrease in YY1 protein ubiquitination, enhanced its stability, and thus enhanced the transcriptional activity of FZD8. Castration enhanced FZD8 binding to Wnt9A and mediated cellular plasticity by activating the non-canonical Wnt (FZD8/FYN/STAT3) pathway. CONCLUSIONS: We identified YY1 as a novel dysregulated transcription factor that plays an important role in NEPC progression in this study. We believe that an in-depth investigation of the mechanism underlying YY1-mediated disease may lead to improved NEPC therapies.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Via de Sinalização Wnt/genética , Antagonistas de Androgênios , Yin-Yang , Diferenciação Celular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
12.
Acta Biochim Pol ; 70(3): 721-727, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724778

RESUMO

This study aimed to figure out how microRNA (miR)-411-3p's impacts on methotrexate (MTX)'s cellular uptake and cytotoxicity in acute lymphoblastic leukaemia (ALL) CEM-C1 cells by targeting Yin-yang 1 (YY1). miR-411-3p and YY1 were detected by RT-qPCR or Western blot. Intracellular MTX concentration was measured by enzyme-linked immunosorbent assay. Cell viability and apoptosis were evaluated by CCK-8, clonal formation assay, and flow cytometry. Verification of miR-411-3p and YY1's targeting link was manifested. It came out that miR-411-3p mimic or si-YY1 elevated intracellular MTX, MTX-induced cytotoxicity and apoptosis rate in CEM-C1. However, the inverse results were noticed in cells introduced with miR-411-3p inhibitor or oe-YY1. Meanwhile, it was found that cell relative luciferase activity was reduced after co-transfection of miR-411-3p mimic with YY1-WT, indicating that miR-411-3p targeted YY1. Elevation of YY1 could turn around elevating miR-411-3p's impacts on MTX's cellular uptake and cytotoxicity in CEM-C1 cells. These findings convey that miR-411-3p motivated MTX's cellular uptake and cytotoxic impacts via targeting YY1 in leukemia cells. This study is helpful for learning about the mechanisms underlying MTX responses in ALL patients.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Metotrexato/farmacologia , Yin-Yang , Transporte Biológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , MicroRNAs/genética
13.
Cells ; 12(16)2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37626849

RESUMO

Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate and limited treatment options. Recent research has brought attention to the significant importance of intercellular communication in the progression of HCC, wherein exosomes have been identified as critical agents facilitating cell-to-cell signaling. In this article, we investigate the impact of macrophages as both sources and targets of exosomes in HCC, shedding light on the intricate interplay between exosome-mediated communication and macrophage involvement in HCC pathogenesis. It investigates how exosomes derived from HCC cells and other cell types within the tumor microenvironment (TME) can influence macrophage behavior, polarization, and recruitment. Furthermore, the section explores the reciprocal interactions between macrophage-derived exosomes and HCC cells, stromal cells, and other immune cells, elucidating their role in tumor growth, angiogenesis, metastasis, and immune evasion. The findings presented here contribute to a better understanding of the role of macrophage-derived exosomes in HCC progression and offer new avenues for targeted interventions and improved patient outcomes.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Humanos , Microambiente Tumoral , Yin-Yang , Macrófagos
14.
Holist Nurs Pract ; 37(5): E75-E82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37595124

RESUMO

Yin-yang theorizes that everything in the world is interoppositionally unified with 2 dynamic opposites (yin and yang), interrooted, interchangeable, and interconvertible. Tai chi (TC) movements and postures are essentially yin-yang concept-based. However, there is still a lack of understanding of yin-yang concepts and applications among people practicing TC. So, in this concept review, we aimed to provide basic understanding of the yin-yang concept and characteristics behind TC practice. Terms derived from the yin-yang concept in TC practice may include blood/qi (energy), stability/mobility, closing/opening moves, expiration/inspiration, solid/empty stance, and defensive/offensive hand movements and postures. These yin-yang attributes are interrestricted and dependent on maintaining a dynamic mind-body harmony. With the yin-yang application, TC can be considered a self-controlled balance perturbation exercise to challenge the stability-mobility (yin-yang) to a new level of harmony. As a health promotion holistic intervention, TC can facilitate the flow in blood/qi pathways or meridians to improve medical conditions. As an integrative mind-body exercise, TC can activate different body parts and brain regions to participate in and coordinate the combined physical and mental activities.


Assuntos
Meridianos , Tai Chi Chuan , Humanos , Yin-Yang , Terapia por Exercício , Promoção da Saúde
15.
Glia ; 71(10): 2437-2455, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37417428

RESUMO

Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.


Assuntos
Astrócitos , Yin-Yang , Animais , Camundongos , Astrócitos/metabolismo , Cerebelo/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
16.
Adv Sci (Weinh) ; 10(25): e2207549, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401236

RESUMO

LncRNAs play a critical role in oral squamous cell carcinoma (OSCC) progression. However, the function and detailed molecular mechanism of most lncRNAs in OSCC are not fully understood. Here, a novel nuclear-localized lncRNA, DUXAP9 (DUXAP9), that is highly expressed in OSCC is identified. A high level of DUXAP9 is positively associated with lymph node metastasis, poor pathological differentiation, advanced clinical stage, worse overall survival, and worse disease-specific survival in OSCC patients. Overexpression of DUXAP9 significantly promotes OSCC cell proliferation, migration, invasion, and xenograft tumor growth and metastasis, and upregulates N-cadherin, Vimentin, Ki67, PCNA, and EZH2 expression and downregulates E-cadherin in vitro and in vivo, whereas knockdown of DUXAP9 remarkably suppresses OSCC cell proliferation, migration, invasion, and xenograft tumor growth in vitro and in vivo in an EZH2-dependent manner. Yin Yang 1 (YY1) is found to activate the transcriptional expression of DUXAP9 in OSCC. Furthermore, DUXAP9 physically interacts with EZH2 and inhibits EZH2 degradation via the suppression of EZH2 phosphorylation, thereby blocking EZH2 translocation from the nucleus to the cytoplasm. Thus, DUXAP9 can serve as a promising target for OSCC therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Yin-Yang , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Bucais/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Quinase CDC2
17.
J Immunotoxicol ; 20(1): 2228420, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37466371

RESUMO

Preeclampsia (PE) is a common obstetric syndrome with an unclear etiology and pathogenesis. The study here aimed to investigate the role of Yin Yang 1 (YY1) in PE, and to reveal any YY1-regulated mechanisms in PE. Peripheral blood, placenta, and endometrial tissues of PE patients, healthy volunteers, and patients who had undergone an elective Cesarean section and had a scarred uterus (control group) were collected for analyses. Rat PE models were established by lipopolysaccharide induction. Subsets of these rats were then made to over-express YY1. At 18 d after the PE was established, urine, blood, and placental tissues from all rats were collected. Levels of regulatory-T (Treg) and helper T-type 17 (TH17) cells in both human and rat blood were measured by flow cytometry. ELISA kits were used to evaluate blood levels of inflammatory factors (i.e. IL-6, IL-10, and IL-17) as well. RT-qPCR and Western blot assays were performed to quantify levels of forkhead box P3 (Foxp3), retinoic acid-related orphan receptor C (RORc), and YY1 in the human and rat placenta and endometrial tissues. Expressions of PI3K/AKT pathway-related proteins were also evaluated by Western blots. The results indicated that the PE patients, relative to levels in control group and the healthy control subjects, had decreased circulating levels of Treg cells/increased TH17 cells; tissues from these patients also had relatively-decreased FoxP3 mRNA and protein expressions and elevated RORc mRNA and protein expressions. YY1 was expressed only at low levels in the PE patient placenta and endometrial tissues. In rats, PE rats treated with over-expressed YY1 had (relative to in PE rats without over-induced YY1) increased circulating levels of Treg cells/decreased TH17 cells; tissues from these rats had elevated FoxP3 mRNA and protein expressions and reduced mRNA and protein RORc expressions, as well as indications of alleviated inflammation. In the rat placenta samples, YY1 was also determined to activate the PI3K/AKT pathway. In summary, YY1 regulates the balance among Treg/TH17 cells and so affect the PE process in part through activation of the PI3K/AKT pathway.


Assuntos
Pré-Eclâmpsia , Humanos , Feminino , Ratos , Gravidez , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T Reguladores , Cesárea , Yin-Yang , Células Th17/metabolismo , Células Th17/patologia , Placenta , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Mensageiro/metabolismo
18.
Front Immunol ; 14: 1199282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334384

RESUMO

Background: Treatment with immune checkpoint inhibitors (ICI) can induce durable responses in cancer patients, but it is commonly associated with serious immune-related side effects. Both effects are suggested to be mediated by CD8+ T-cell infiltration. Whole body CD8+ T-cell distribution can be visualized by PET imaging of a 89Zr-labeled anti-humanCD8a minibody, currently investigated in a phase 2b trial. Main body: An adult patient diagnosed with metastatic melanoma developed ICI-related hypophysitis after two courses of combined immunotherapy (ipilimumab (3 mg/kg) and nivolumab (1 mg/kg) at 3 weeks interval). On a [89Zr]Zr-crefmirlimab berdoxam PET/CT scan, made 8 days before clinical symptoms occurred, increased CD8+ T-cell infiltration in the pituitary gland was detected. Simultaneously, tracer uptake in a cerebral metastasis was increased, indicating ICI-induced tumor infiltration by CD8+ T-cells. Conclusions: The observations in this case report underscore the role of CD8+ T-cell in non-tumor tissues in ICI-related toxicity. In addition, it illustrates a potential role for molecular imaging by PET/CT for investigation and monitoring of ICI-induced effects.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Adulto , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Radioisótopos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Zircônio , Yin-Yang , Encéfalo/diagnóstico por imagem
19.
Biomed Pharmacother ; 165: 115006, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327589

RESUMO

Metabolic reprogramming is one of the key features of tumors facilitating their rapid proliferation and adaptation to harsh microenvironments. Yin Yang 2 (YY2) has recently been reported as a tumor suppressor downregulated in various types of tumors; however, the molecular mechanisms underlying its tumor-suppressive activity remain poorly understood. Furthermore, the involvement of YY2 in tumor cell metabolic reprogramming remains unclear. Herein, we aimed to elucidate the novel regulatory mechanism of YY2 in the suppression of tumorigenesis. Using transcriptomic analysis, we uncovered an unprecedented link between YY2 and tumor cell serine metabolism. YY2 alteration could negatively regulate the expression level of phosphoglycerate dehydrogenase (PHGDH), the first enzyme in the serine biosynthesis pathway, and consequently, tumor cell de novo serine biosynthesis. Mechanistically, we revealed that YY2 binds to the PHGDH promoter and suppresses its transcriptional activity. This, in turn, leads to decreased production of serine, nucleotides, and cellular reductants NADH and NADPH, which subsequently suppresses tumorigenic potential. These findings reveal a novel function of YY2 as a regulator of the serine metabolic pathway in tumor cells and provide new insights into its tumor suppressor activity. Furthermore, our findings suggest the potential of YY2 as a target for metabolic-based antitumor therapeutic strategies.


Assuntos
Fosfoglicerato Desidrogenase , Serina , Humanos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Yin-Yang , Carcinogênese/genética , Microambiente Tumoral , Fatores de Transcrição/metabolismo
20.
Adv Sci (Weinh) ; 10(23): e2207349, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37300334

RESUMO

Cancer stem cells (CSCs) are associated with tumor progression, recurrence, and therapeutic resistance. To maintain their pool while promoting tumorigenesis, CSCs divide asymmetrically, producing a CSC and a highly proliferative, more differentiated transit-amplifying cell. Exhausting the CSC pool has been proposed as an effective antitumor strategy; however, the mechanism underlying CSC division remains poorly understood, thereby largely limiting its clinical application. Here, through cross-omics analysis, yin yang 2 (YY2) is identified as a novel negative regulator of CSC maintenance. It is shown that YY2 is downregulated in stem-like tumor spheres formed by hepatocarcinoma cells and in liver cancer, in which its expression is negatively correlated with disease progression and poor prognosis. Furthermore, it is revealed that YY2 overexpression suppressed liver CSC asymmetric division, leading to depletion of the CSC pool and decreased tumor-initiating capacity. Meanwhile, YY2 knock-out in stem-like tumor spheres caused enrichment in mitochondrial functions. Mechanistically, it is revealed that YY2 impaired mitochondrial fission, and consequently, liver CSC asymmetric division, by suppressing the transcription of dynamin-related protein 1. These results unravel a novel regulatory mechanism of mitochondrial dynamic-mediated CSCs asymmetric division and highlight the role of YY2 as a tumor suppressor and a therapeutic target in antitumor treatment.


Assuntos
Neoplasias Hepáticas , Dinâmica Mitocondrial , Humanos , Yin-Yang , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...